Added gradient descent for vector-valued functions
This commit is contained in:
parent
1c66f1b72f
commit
db0481e9cf
1 changed files with 88 additions and 10 deletions
|
@ -1,37 +1,115 @@
|
||||||
|
import org.ejml.simple.SimpleMatrix;
|
||||||
|
|
||||||
import java.util.function.Function;
|
import java.util.function.Function;
|
||||||
|
|
||||||
public class GradientDescent {
|
public class GradientDescent {
|
||||||
|
private static final double STANDARD_PRECISION = 0.000001;
|
||||||
|
private static final double STANDARD_STEP_COEFFICIENT = 0.5;
|
||||||
|
private static final int STANDARD_MAX_ITERATIONS = 1000;
|
||||||
|
|
||||||
private final double precision = 0.000001;
|
private double precision;
|
||||||
|
private double stepCoefficient;
|
||||||
|
|
||||||
public double findLocalMinimum(Function<Double, Double> f, double initialX) {
|
public GradientDescent(double precision, double stepCoefficient) {
|
||||||
double stepCoefficient = 0.5;
|
this.precision = precision;
|
||||||
|
this.stepCoefficient = stepCoefficient;
|
||||||
|
}
|
||||||
|
|
||||||
|
public GradientDescent() {
|
||||||
|
this(STANDARD_PRECISION, STANDARD_STEP_COEFFICIENT);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs gradient descent on a function f: ℝ -> ℝ
|
||||||
|
* @param f vector-valued function
|
||||||
|
* @param initialX initial X vector
|
||||||
|
* @param maxIterations maximum number of iterations
|
||||||
|
* @return approximation of the nearest local minimum
|
||||||
|
*/
|
||||||
|
public double findLocalMinimum(Function<Double, Double> f, double initialX, int maxIterations) {
|
||||||
double previousStep = 1.0;
|
double previousStep = 1.0;
|
||||||
double currentX = initialX;
|
double currentX = initialX;
|
||||||
double previousX = initialX;
|
double previousX = initialX;
|
||||||
double previousY = f.apply(previousX);
|
double previousY = f.apply(previousX);
|
||||||
int iter = 1000;
|
|
||||||
|
|
||||||
currentX += stepCoefficient * previousY;
|
currentX += this.stepCoefficient * previousY;
|
||||||
|
|
||||||
while (previousStep > precision && iter > 0) {
|
while (previousStep > this.precision && maxIterations > 0) {
|
||||||
iter--;
|
maxIterations--;
|
||||||
double currentY = f.apply(currentX);
|
double currentY = f.apply(currentX);
|
||||||
if (currentY > previousY) {
|
if (currentY > previousY) {
|
||||||
stepCoefficient = -stepCoefficient / 2;
|
this.stepCoefficient = -this.stepCoefficient / 2;
|
||||||
}
|
}
|
||||||
previousX = currentX;
|
previousX = currentX;
|
||||||
currentX += stepCoefficient * previousY;
|
currentX += this.stepCoefficient * previousY;
|
||||||
previousY = currentY;
|
previousY = currentY;
|
||||||
previousStep = StrictMath.abs(currentX - previousX);
|
previousStep = StrictMath.abs(currentX - previousX);
|
||||||
}
|
}
|
||||||
return currentX;
|
return currentX;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public double findLocalMinimum(Function<Double, Double> f, double initialX) {
|
||||||
|
return findLocalMinimum(f, initialX, STANDARD_MAX_ITERATIONS);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs gradient descent on a function f: ℝⁿ -> ℝⁿ.
|
||||||
|
* @param f vector-valued function
|
||||||
|
* @param initialX initial X vector
|
||||||
|
* @param maxIterations maximum number of iterations
|
||||||
|
* @return approximation of the nearest local minimum
|
||||||
|
*/
|
||||||
|
public SimpleMatrix findLocalMinimum(Function<SimpleMatrix, SimpleMatrix> f,
|
||||||
|
SimpleMatrix initialX, int maxIterations) {
|
||||||
|
double previousStep = 1.0;
|
||||||
|
SimpleMatrix currentX = initialX;
|
||||||
|
SimpleMatrix previousX = initialX;
|
||||||
|
SimpleMatrix previousY = f.apply(previousX);
|
||||||
|
|
||||||
|
currentX = currentX.plus(this.stepCoefficient, previousY);
|
||||||
|
|
||||||
|
while (previousStep > this.precision && maxIterations > 0) {
|
||||||
|
maxIterations--;
|
||||||
|
SimpleMatrix currentY = f.apply(currentX);
|
||||||
|
if (currentY.normF() > previousY.normF()) {
|
||||||
|
this.stepCoefficient = -this.stepCoefficient / 2;
|
||||||
|
}
|
||||||
|
previousX = currentX;
|
||||||
|
currentX = currentX.plus(this.stepCoefficient, previousY);
|
||||||
|
previousY = currentY;
|
||||||
|
previousStep = currentX.minus(previousX).normF();
|
||||||
|
}
|
||||||
|
return currentX;
|
||||||
|
}
|
||||||
|
|
||||||
|
public SimpleMatrix findLocalMinimum(Function<SimpleMatrix, SimpleMatrix> f, SimpleMatrix initialX) {
|
||||||
|
return findLocalMinimum(f, initialX, STANDARD_MAX_ITERATIONS);
|
||||||
|
}
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
GradientDescent gd = new GradientDescent();
|
GradientDescent gd = new GradientDescent();
|
||||||
Function<Double, Double> f = x -> x*x;
|
|
||||||
|
|
||||||
|
Function<Double, Double> f = x -> x*x;
|
||||||
System.out.println(gd.findLocalMinimum(f, 1));
|
System.out.println(gd.findLocalMinimum(f, 1));
|
||||||
|
|
||||||
|
Function<SimpleMatrix, SimpleMatrix> g = x -> x.elementMult(x);
|
||||||
|
SimpleMatrix initialX = new SimpleMatrix(2, 1, true, new double[]{1, 0.5});
|
||||||
|
System.out.println(gd.findLocalMinimum(g, initialX));
|
||||||
|
}
|
||||||
|
|
||||||
|
public double getPrecision() {
|
||||||
|
return precision;
|
||||||
|
}
|
||||||
|
|
||||||
|
public void setPrecision(double precision) {
|
||||||
|
this.precision = precision <= 0 ? STANDARD_PRECISION : precision;
|
||||||
|
}
|
||||||
|
|
||||||
|
public double getStepCoefficient() {
|
||||||
|
return stepCoefficient;
|
||||||
|
}
|
||||||
|
|
||||||
|
public void setStepCoefficient(double stepCoefficient) {
|
||||||
|
this.stepCoefficient = stepCoefficient;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue