Compare commits
3 commits
b20f62309b
...
c7154817ee
Author | SHA1 | Date | |
---|---|---|---|
c7154817ee | |||
faa547564c | |||
e7de925373 |
7 changed files with 67 additions and 15 deletions
8
src/main/java/de/lluni/javann/Initializer.java
Normal file
8
src/main/java/de/lluni/javann/Initializer.java
Normal file
|
@ -0,0 +1,8 @@
|
|||
package de.lluni.javann;
|
||||
|
||||
public enum Initializer {
|
||||
ZEROS,
|
||||
ONES,
|
||||
GAUSSIAN,
|
||||
RANDOM
|
||||
}
|
|
@ -79,8 +79,9 @@ public class Network {
|
|||
* @param y_train labels
|
||||
* @param epochs amount of training iterations
|
||||
* @param learningRate step size of gradient descent
|
||||
* @param optimize if step size should decrease for each subsequent epoch
|
||||
*/
|
||||
public void fit(SimpleMatrix[] X_train, SimpleMatrix[] y_train, int epochs, double learningRate) {
|
||||
public void fit(SimpleMatrix[] X_train, SimpleMatrix[] y_train, int epochs, double learningRate, boolean optimize) {
|
||||
int samples = X_train.length;
|
||||
|
||||
for (int i = 0; i < epochs; i++) {
|
||||
|
@ -98,7 +99,11 @@ public class Network {
|
|||
// backward propagation
|
||||
SimpleMatrix error = lossPrime.apply(y_train[j], output);
|
||||
for (int k = layers.size() - 1; k >= 0; k--) {
|
||||
if (optimize) {
|
||||
error = layers.get(k).backwardPropagation(error, learningRate / (i+1));
|
||||
} else {
|
||||
error = layers.get(k).backwardPropagation(error, learningRate);
|
||||
}
|
||||
}
|
||||
}
|
||||
// calculate average error on all samples
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package de.lluni.javann.examples;
|
||||
|
||||
import de.lluni.javann.Initializer;
|
||||
import de.lluni.javann.Network;
|
||||
import de.lluni.javann.functions.ActivationFunctions;
|
||||
import de.lluni.javann.functions.LossFunctions;
|
||||
|
@ -46,17 +47,17 @@ public class ExampleSine {
|
|||
|
||||
// create network and add layers
|
||||
Network network = new Network();
|
||||
network.addLayer(new FCLayer(8));
|
||||
network.addLayer(new FCLayer(8, Initializer.GAUSSIAN, Initializer.ONES));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::LeakyReLu, ActivationFunctions::LeakyReLuPrime));
|
||||
network.addLayer(new FCLayer(8));
|
||||
network.addLayer(new FCLayer(8, Initializer.GAUSSIAN, Initializer.ONES));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::LeakyReLu, ActivationFunctions::LeakyReLuPrime));
|
||||
network.addLayer(new FCLayer(1));
|
||||
network.addLayer(new FCLayer(1, Initializer.GAUSSIAN, Initializer.ONES));
|
||||
|
||||
// configure loss function for the network
|
||||
network.use(LossFunctions::MSE, LossFunctions::MSEPrime);
|
||||
|
||||
// train network on X_train and y_train
|
||||
network.fit(X_train, y_train, 100, 0.05d);
|
||||
network.fit(X_train, y_train, 100, 0.05d, true);
|
||||
|
||||
// predict X_test and output results to console
|
||||
SimpleMatrix[] output = network.predict(X_test);
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package de.lluni.javann.examples;
|
||||
|
||||
import de.lluni.javann.Initializer;
|
||||
import de.lluni.javann.Network;
|
||||
import de.lluni.javann.functions.ActivationFunctions;
|
||||
import de.lluni.javann.functions.LossFunctions;
|
||||
|
@ -19,13 +20,13 @@ public class ExampleXOR {
|
|||
new SimpleMatrix(new double[][]{{0}})};
|
||||
|
||||
Network network = new Network();
|
||||
network.addLayer(new FCLayer(3));
|
||||
network.addLayer(new FCLayer(3, Initializer.RANDOM, Initializer.RANDOM));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::tanh, ActivationFunctions::tanhPrime));
|
||||
network.addLayer(new FCLayer(1));
|
||||
network.addLayer(new FCLayer(1, Initializer.RANDOM, Initializer.RANDOM));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::tanh, ActivationFunctions::tanhPrime));
|
||||
|
||||
network.use(LossFunctions::MSE, LossFunctions::MSEPrime);
|
||||
network.fit(X_train, y_train, 1000, 0.1d);
|
||||
network.fit(X_train, y_train, 1000, 0.1d, false);
|
||||
|
||||
SimpleMatrix[] output = network.predict(X_train);
|
||||
for (SimpleMatrix entry : output) {
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package de.lluni.javann.examples;
|
||||
|
||||
import de.lluni.javann.Initializer;
|
||||
import de.lluni.javann.Network;
|
||||
import de.lluni.javann.functions.ActivationFunctions;
|
||||
import de.lluni.javann.functions.LossFunctions;
|
||||
|
@ -19,14 +20,14 @@ public class ExampleXORAddedNeurons {
|
|||
new SimpleMatrix(new double[][]{{0}})};
|
||||
|
||||
Network network = new Network();
|
||||
network.addLayer(new FCLayer(1));
|
||||
network.addLayer(new FCLayer(1, Initializer.RANDOM, Initializer.RANDOM));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::tanh, ActivationFunctions::tanhPrime));
|
||||
network.addLayer(new FCLayer(1));
|
||||
network.addLayer(new FCLayer(1, Initializer.RANDOM, Initializer.RANDOM));
|
||||
network.addLayer(new ActivationLayer(ActivationFunctions::tanh, ActivationFunctions::tanhPrime));
|
||||
network.addNeuron(0, 2);
|
||||
|
||||
network.use(LossFunctions::MSE, LossFunctions::MSEPrime);
|
||||
network.fit(X_train, y_train, 1000, 0.1d);
|
||||
network.fit(X_train, y_train, 1000, 0.1d, false);
|
||||
|
||||
SimpleMatrix[] output = network.predict(X_train);
|
||||
for (SimpleMatrix entry : output) {
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package de.lluni.javann.layers;
|
||||
|
||||
import de.lluni.javann.Initializer;
|
||||
import de.lluni.javann.util.Utilities;
|
||||
import org.ejml.simple.SimpleMatrix;
|
||||
|
||||
|
@ -9,6 +10,8 @@ import java.util.Random;
|
|||
* Fully connected layer with n Neurons
|
||||
*/
|
||||
public class FCLayer extends Layer {
|
||||
private final Initializer weightInit;
|
||||
private final Initializer biasInit;
|
||||
private SimpleMatrix weights;
|
||||
private SimpleMatrix biases;
|
||||
private int numNeurons;
|
||||
|
@ -18,14 +21,26 @@ public class FCLayer extends Layer {
|
|||
* Creates a fully connected layer with numNeurons neurons
|
||||
* @param numNeurons amount of neurons in this layer
|
||||
*/
|
||||
public FCLayer(int numNeurons) {
|
||||
public FCLayer(int numNeurons, Initializer weightInit, Initializer biasInit) {
|
||||
this.numNeurons = numNeurons;
|
||||
this.weightInit = weightInit;
|
||||
this.biasInit = biasInit;
|
||||
isInitialized = false;
|
||||
}
|
||||
|
||||
private void initialize(int inputSize) {
|
||||
this.weights = Utilities.gaussianMatrix(inputSize, numNeurons, 0, 1, 0.1d);
|
||||
this.biases = Utilities.ones(1, numNeurons);
|
||||
switch (weightInit) {
|
||||
case ZEROS -> this.weights = new SimpleMatrix(inputSize, numNeurons);
|
||||
case ONES -> this.weights = Utilities.ones(inputSize, numNeurons);
|
||||
case GAUSSIAN -> this.weights = Utilities.gaussianMatrix(inputSize, numNeurons, 0, 1, 0.1d);
|
||||
case RANDOM -> this.weights = Utilities.randomMatrix(inputSize, numNeurons);
|
||||
}
|
||||
switch (biasInit) {
|
||||
case ZEROS -> this.biases = new SimpleMatrix(1, numNeurons);
|
||||
case ONES -> this.biases = Utilities.ones(1, numNeurons);
|
||||
case GAUSSIAN -> this.biases = Utilities.gaussianMatrix(1, numNeurons, 0, 1, 0.1d);
|
||||
case RANDOM -> this.biases = Utilities.randomMatrix(1, numNeurons);
|
||||
}
|
||||
this.isInitialized = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -14,6 +14,9 @@ import java.util.Random;
|
|||
public class Utilities {
|
||||
private static final double STANDARD_GAUSSIAN_FACTOR = 1.0d;
|
||||
|
||||
private static final double STANDARD_RANDOM_ORIGIN = -1.0d;
|
||||
private static final double STANDARD_RANDOM_BOUND = 1.0d;
|
||||
|
||||
/**
|
||||
* Creates a matrix filled with ones
|
||||
* @param rows amount of rows
|
||||
|
@ -50,6 +53,24 @@ public class Utilities {
|
|||
return gaussianMatrix(rows, columns, mean, stddev, STANDARD_GAUSSIAN_FACTOR);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a matrix with random values
|
||||
* @param rows amount of rows
|
||||
* @param columns amount of columns
|
||||
* @param origin minimum random value
|
||||
* @param bound maximum random value
|
||||
* @return matrix with random values
|
||||
*/
|
||||
public static SimpleMatrix randomMatrix(int rows, int columns, double origin, double bound) {
|
||||
Random random = new Random();
|
||||
return new SimpleMatrix(rows, columns, true,
|
||||
random.doubles((long) rows * columns, origin, bound).toArray());
|
||||
}
|
||||
|
||||
public static SimpleMatrix randomMatrix(int rows, int columns) {
|
||||
return randomMatrix(rows, columns, STANDARD_RANDOM_ORIGIN, STANDARD_RANDOM_BOUND);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates an array of evenly spaced values from the interval [start, end)
|
||||
* @param start start value
|
||||
|
|
Loading…
Reference in a new issue