import org.ejml.simple.SimpleMatrix; import java.util.Random; /** * Goal: initialize layer without any neurons. Not yet implemented. * Layer initialized with 1 neuron. * Assumes that each new neuron is fully connected to every previous neuron (this will be changed in the future). */ public class BlankLayer extends Layer { SimpleMatrix weights; SimpleMatrix biases; public BlankLayer(int inputSize) { Random random = new Random(); this.weights = new SimpleMatrix(inputSize, 1, true, random.doubles(inputSize, -1, 1).toArray()); this.biases = new SimpleMatrix(1, 1, true, random.doubles(1, -1, 1).toArray()); } @Override public SimpleMatrix forwardPropagation(SimpleMatrix inputs) { this.input = inputs; this.output = this.input.mult(this.weights).plus(this.biases); return this.output; } @Override public SimpleMatrix backwardPropagation(SimpleMatrix outputError, double learningRate) { SimpleMatrix inputError = outputError.mult(this.weights.transpose()); SimpleMatrix weightsError = this.input.transpose().mult(outputError); this.weights = this.weights.plus(learningRate, weightsError); this.biases = this.biases.plus(learningRate, outputError); return inputError; } }