rustfmt
This commit is contained in:
parent
d80bd3c5e5
commit
2f3745a31c
7 changed files with 105 additions and 61 deletions
|
@ -3,20 +3,24 @@ extern crate rust_nn;
|
|||
use std::error::Error;
|
||||
use std::f64::consts::PI;
|
||||
|
||||
use ndarray_rand::RandomExt;
|
||||
use ndarray::Array1;
|
||||
use ndarray_rand::rand_distr::Uniform;
|
||||
use ndarray_rand::RandomExt;
|
||||
use plotters::prelude::*;
|
||||
use rust_nn::Network;
|
||||
use rust_nn::functions::{activation_functions, loss_functions};
|
||||
use rust_nn::layers::activation_layer::ActivationLayer;
|
||||
use rust_nn::layers::fc_layer::{FCLayer, Initializer};
|
||||
use ndarray::Array1;
|
||||
use rust_nn::Network;
|
||||
|
||||
fn main() -> Result<(), Box<dyn Error>> {
|
||||
// training data
|
||||
let training_interval = (0.0f64, 2.0f64 * PI);
|
||||
let steps = 100000;
|
||||
let training_values = Array1::random(steps, Uniform::new(training_interval.0, training_interval.1)).to_vec();
|
||||
let training_values = Array1::random(
|
||||
steps,
|
||||
Uniform::new(training_interval.0, training_interval.1),
|
||||
)
|
||||
.to_vec();
|
||||
let mut x_train = Vec::new();
|
||||
let mut y_train = Vec::new();
|
||||
for x in training_values {
|
||||
|
@ -42,19 +46,23 @@ fn main() -> Result<(), Box<dyn Error>> {
|
|||
network.add_layer(Box::new(FCLayer::new(
|
||||
8,
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1)
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(
|
||||
activation_functions::Type::LeakyRelu,
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu)));
|
||||
network.add_layer(Box::new(FCLayer::new(
|
||||
8,
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1)
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(
|
||||
activation_functions::Type::LeakyRelu,
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu)));
|
||||
network.add_layer(Box::new(FCLayer::new(
|
||||
1,
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1)
|
||||
Initializer::GaussianWFactor(0.0, 1.0, 0.1),
|
||||
)));
|
||||
|
||||
// train network on training data
|
||||
|
@ -79,20 +87,26 @@ fn main() -> Result<(), Box<dyn Error>> {
|
|||
.draw()?;
|
||||
|
||||
// add the first plot
|
||||
let data1: Vec<(f64,f64)> = x_test.iter().zip(y_test_true.iter())
|
||||
let data1: Vec<(f64, f64)> = x_test
|
||||
.iter()
|
||||
.zip(y_test_true.iter())
|
||||
.map(|(x, y)| (x[0], y[0]))
|
||||
.collect();
|
||||
chart
|
||||
.draw_series(LineSeries::new(data1, &RED)).unwrap()
|
||||
.draw_series(LineSeries::new(data1, &RED))
|
||||
.unwrap()
|
||||
.label("true values")
|
||||
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &RED));
|
||||
|
||||
// add the second plot
|
||||
let data2: Vec<(f64,f64)> = x_test.iter().zip(y_test_pred.iter())
|
||||
let data2: Vec<(f64, f64)> = x_test
|
||||
.iter()
|
||||
.zip(y_test_pred.iter())
|
||||
.map(|(x, y)| (x[0], y[0]))
|
||||
.collect();
|
||||
chart
|
||||
.draw_series(LineSeries::new(data2, &BLUE)).unwrap()
|
||||
.draw_series(LineSeries::new(data2, &BLUE))
|
||||
.unwrap()
|
||||
.label("predicted values")
|
||||
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &BLUE));
|
||||
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
extern crate rust_nn;
|
||||
|
||||
use rust_nn::Network;
|
||||
use ndarray::array;
|
||||
use rust_nn::functions::{activation_functions, loss_functions};
|
||||
use rust_nn::layers::activation_layer::ActivationLayer;
|
||||
use rust_nn::layers::fc_layer::{FCLayer, Initializer};
|
||||
use ndarray::array;
|
||||
use rust_nn::Network;
|
||||
|
||||
fn main() {
|
||||
// training data
|
||||
|
@ -12,20 +12,15 @@ fn main() {
|
|||
array![0.0, 0.0],
|
||||
array![0.0, 1.0],
|
||||
array![1.0, 0.0],
|
||||
array![1.0, 1.0]
|
||||
];
|
||||
let y_train = vec![
|
||||
array![0.0],
|
||||
array![1.0],
|
||||
array![1.0],
|
||||
array![0.0]
|
||||
array![1.0, 1.0],
|
||||
];
|
||||
let y_train = vec![array![0.0], array![1.0], array![1.0], array![0.0]];
|
||||
// test data
|
||||
let x_test= vec![
|
||||
let x_test = vec![
|
||||
array![0.0, 0.0],
|
||||
array![0.0, 1.0],
|
||||
array![1.0, 0.0],
|
||||
array![1.0, 1.0]
|
||||
array![1.0, 1.0],
|
||||
];
|
||||
|
||||
// initialize neural network
|
||||
|
@ -35,15 +30,19 @@ fn main() {
|
|||
network.add_layer(Box::new(FCLayer::new(
|
||||
3,
|
||||
Initializer::Gaussian(0.0, 1.0),
|
||||
Initializer::Gaussian(0.0, 1.0)
|
||||
Initializer::Gaussian(0.0, 1.0),
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(
|
||||
activation_functions::Type::Tanh,
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::Tanh)));
|
||||
network.add_layer(Box::new(FCLayer::new(
|
||||
1,
|
||||
Initializer::Gaussian(0.0, 1.0),
|
||||
Initializer::Gaussian(0.0, 1.0)
|
||||
Initializer::Gaussian(0.0, 1.0),
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(
|
||||
activation_functions::Type::Tanh,
|
||||
)));
|
||||
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::Tanh)));
|
||||
|
||||
// train network on training data
|
||||
network.fit(x_train, y_train, 1000, 0.1, false);
|
||||
|
@ -58,4 +57,4 @@ fn main() {
|
|||
prediction.map_mut(|x| *x = x.round());
|
||||
print!("prediction: {}\n", prediction);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,16 +6,21 @@ pub enum Type {
|
|||
Logistic,
|
||||
Tanh,
|
||||
Relu,
|
||||
LeakyRelu
|
||||
LeakyRelu,
|
||||
}
|
||||
|
||||
pub fn parse_type(t: Type) -> (fn(&Array1<f64>) -> Array1<f64>, fn(&Array1<f64>) -> Array1<f64>) {
|
||||
pub fn parse_type(
|
||||
t: Type,
|
||||
) -> (
|
||||
fn(&Array1<f64>) -> Array1<f64>,
|
||||
fn(&Array1<f64>) -> Array1<f64>,
|
||||
) {
|
||||
match t {
|
||||
Type::Identity => (identity, identity_prime),
|
||||
Type::Logistic => (logistic, logistic_prime),
|
||||
Type::Tanh => (tanh, tanh_prime),
|
||||
Type::Relu => (relu, relu_prime),
|
||||
Type::LeakyRelu => (leaky_relu, leaky_relu_prime)
|
||||
Type::LeakyRelu => (leaky_relu, leaky_relu_prime),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -78,7 +83,7 @@ pub fn relu(matrix: &Array1<f64>) -> Array1<f64> {
|
|||
pub fn relu_prime(matrix: &Array1<f64>) -> Array1<f64> {
|
||||
let mut result = matrix.clone();
|
||||
for x in result.iter_mut() {
|
||||
*x = if (*x) <= 0.0 {0.0} else {1.0};
|
||||
*x = if (*x) <= 0.0 { 0.0 } else { 1.0 };
|
||||
}
|
||||
result
|
||||
}
|
||||
|
@ -94,7 +99,7 @@ pub fn leaky_relu(matrix: &Array1<f64>) -> Array1<f64> {
|
|||
pub fn leaky_relu_prime(matrix: &Array1<f64>) -> Array1<f64> {
|
||||
let mut result = matrix.clone();
|
||||
for x in result.iter_mut() {
|
||||
*x = if (*x) <= 0.0 {0.001} else {1.0};
|
||||
*x = if (*x) <= 0.0 { 0.001 } else { 1.0 };
|
||||
}
|
||||
result
|
||||
}
|
||||
|
|
|
@ -2,13 +2,18 @@ use ndarray::{Array1, ArrayView1};
|
|||
|
||||
pub enum Type {
|
||||
MSE,
|
||||
MAE
|
||||
MAE,
|
||||
}
|
||||
|
||||
pub fn parse_type(t: Type) -> (fn(ArrayView1<f64>, ArrayView1<f64>) -> f64, fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>) {
|
||||
pub fn parse_type(
|
||||
t: Type,
|
||||
) -> (
|
||||
fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
|
||||
fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
|
||||
) {
|
||||
match t {
|
||||
Type::MSE => (mse, mse_prime),
|
||||
Type::MAE => (mae, mae_prime)
|
||||
Type::MAE => (mae, mae_prime),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
use ndarray::{Array1, arr1, ArrayView1};
|
||||
use ndarray::{arr1, Array1, ArrayView1};
|
||||
|
||||
use crate::functions::activation_functions::*;
|
||||
use super::Layer;
|
||||
use crate::functions::activation_functions::*;
|
||||
|
||||
pub struct ActivationLayer {
|
||||
input: Array1<f64>,
|
||||
output: Array1<f64>,
|
||||
activation: fn(&Array1<f64>) -> Array1<f64>,
|
||||
activation_prime: fn(&Array1<f64>) -> Array1<f64>
|
||||
activation_prime: fn(&Array1<f64>) -> Array1<f64>,
|
||||
}
|
||||
|
||||
impl ActivationLayer {
|
||||
|
@ -17,7 +17,7 @@ impl ActivationLayer {
|
|||
input: arr1(&[]),
|
||||
output: arr1(&[]),
|
||||
activation,
|
||||
activation_prime
|
||||
activation_prime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -36,5 +36,4 @@ impl Layer for ActivationLayer {
|
|||
temp.zip_mut_with(&output_error, |x, y| *x *= y);
|
||||
temp
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
extern crate ndarray;
|
||||
|
||||
use ndarray::{Array1, Array2, arr1, arr2, Array, ArrayView1, ShapeBuilder};
|
||||
use ndarray_rand::RandomExt;
|
||||
use ndarray::{arr1, arr2, Array, Array1, Array2, ArrayView1, ShapeBuilder};
|
||||
use ndarray_rand::rand_distr::{Normal, Uniform};
|
||||
use ndarray_rand::RandomExt;
|
||||
|
||||
use super::Layer;
|
||||
|
||||
|
@ -11,21 +11,25 @@ pub enum Initializer {
|
|||
Ones,
|
||||
Gaussian(f64, f64),
|
||||
GaussianWFactor(f64, f64, f64),
|
||||
Uniform(f64, f64)
|
||||
Uniform(f64, f64),
|
||||
}
|
||||
|
||||
impl Initializer {
|
||||
pub fn init<Sh, D>(&self, shape: Sh) -> Array<f64, D>
|
||||
where
|
||||
Sh: ShapeBuilder<Dim = D>, D: ndarray::Dimension
|
||||
Sh: ShapeBuilder<Dim = D>,
|
||||
D: ndarray::Dimension,
|
||||
{
|
||||
match self {
|
||||
Self::Zeros => Array::zeros(shape),
|
||||
Self::Ones => Array::ones(shape),
|
||||
Self::Gaussian(mean, stddev) => Array::random(shape, Normal::new(*mean, *stddev).unwrap()),
|
||||
Self::GaussianWFactor(mean, stddev, factor)
|
||||
=> Array::random(shape, Normal::new(*mean, *stddev).unwrap()) * *factor,
|
||||
Self::Uniform(low, high) => Array::random(shape, Uniform::new(low, high))
|
||||
Self::Gaussian(mean, stddev) => {
|
||||
Array::random(shape, Normal::new(*mean, *stddev).unwrap())
|
||||
}
|
||||
Self::GaussianWFactor(mean, stddev, factor) => {
|
||||
Array::random(shape, Normal::new(*mean, *stddev).unwrap()) * *factor
|
||||
}
|
||||
Self::Uniform(low, high) => Array::random(shape, Uniform::new(low, high)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -42,7 +46,11 @@ pub struct FCLayer {
|
|||
}
|
||||
|
||||
impl FCLayer {
|
||||
pub fn new(num_neurons: usize, weight_initializer: Initializer, bias_initializer: Initializer) -> Self {
|
||||
pub fn new(
|
||||
num_neurons: usize,
|
||||
weight_initializer: Initializer,
|
||||
bias_initializer: Initializer,
|
||||
) -> Self {
|
||||
FCLayer {
|
||||
num_neurons,
|
||||
is_initialized: false,
|
||||
|
@ -51,7 +59,7 @@ impl FCLayer {
|
|||
input: arr1(&[]),
|
||||
output: arr1(&[]),
|
||||
weights: arr2(&[[]]),
|
||||
biases: arr1(&[])
|
||||
biases: arr1(&[]),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -75,11 +83,18 @@ impl Layer for FCLayer {
|
|||
|
||||
fn backward_pass(&mut self, output_error: ArrayView1<f64>, learning_rate: f64) -> Array1<f64> {
|
||||
let input_error = output_error.dot(&self.weights.t());
|
||||
let delta_weights =
|
||||
self.input.to_owned().into_shape((self.input.len(), 1usize)).unwrap()
|
||||
.dot(&output_error.into_shape((1usize, output_error.len())).unwrap());
|
||||
let delta_weights = self
|
||||
.input
|
||||
.to_owned()
|
||||
.into_shape((self.input.len(), 1usize))
|
||||
.unwrap()
|
||||
.dot(
|
||||
&output_error
|
||||
.into_shape((1usize, output_error.len()))
|
||||
.unwrap(),
|
||||
);
|
||||
self.weights = &self.weights + learning_rate * &delta_weights;
|
||||
self.biases = &self.biases + learning_rate * &output_error;
|
||||
input_error
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
17
src/lib.rs
17
src/lib.rs
|
@ -8,7 +8,7 @@ use ndarray::{Array1, ArrayView1};
|
|||
pub struct Network {
|
||||
layers: Vec<Box<dyn Layer>>,
|
||||
loss: fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
|
||||
loss_prime: fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>
|
||||
loss_prime: fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
|
||||
}
|
||||
|
||||
impl Network {
|
||||
|
@ -17,7 +17,7 @@ impl Network {
|
|||
Network {
|
||||
layers: vec![],
|
||||
loss,
|
||||
loss_prime
|
||||
loss_prime,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -41,7 +41,14 @@ impl Network {
|
|||
result
|
||||
}
|
||||
|
||||
pub fn fit(&mut self, x_train: Vec<Array1<f64>>, y_train: Vec<Array1<f64>>, epochs: usize, learning_rate: f64, trivial_optimize: bool) {
|
||||
pub fn fit(
|
||||
&mut self,
|
||||
x_train: Vec<Array1<f64>>,
|
||||
y_train: Vec<Array1<f64>>,
|
||||
epochs: usize,
|
||||
learning_rate: f64,
|
||||
trivial_optimize: bool,
|
||||
) {
|
||||
assert!(x_train.len() > 0);
|
||||
assert!(x_train.len() == y_train.len());
|
||||
let num_samples = x_train.len();
|
||||
|
@ -63,7 +70,7 @@ impl Network {
|
|||
let mut error = (self.loss_prime)(y_train[j].view(), output.view());
|
||||
for layer in self.layers.iter_mut().rev() {
|
||||
if trivial_optimize {
|
||||
error = layer.backward_pass(error.view(), learning_rate / (i+1) as f64);
|
||||
error = layer.backward_pass(error.view(), learning_rate / (i + 1) as f64);
|
||||
} else {
|
||||
error = layer.backward_pass(error.view(), learning_rate);
|
||||
}
|
||||
|
@ -71,7 +78,7 @@ impl Network {
|
|||
}
|
||||
// calculate average error on all samples
|
||||
err /= num_samples as f64;
|
||||
println!("epoch {}/{} error={}", i+1, epochs, err);
|
||||
println!("epoch {}/{} error={}", i + 1, epochs, err);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue