This commit is contained in:
lluni 2023-01-21 15:19:55 +01:00
parent d80bd3c5e5
commit 2f3745a31c
Signed by: lluni
GPG key ID: ACEEB468BC325D35
7 changed files with 105 additions and 61 deletions

View file

@ -3,20 +3,24 @@ extern crate rust_nn;
use std::error::Error; use std::error::Error;
use std::f64::consts::PI; use std::f64::consts::PI;
use ndarray_rand::RandomExt; use ndarray::Array1;
use ndarray_rand::rand_distr::Uniform; use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
use plotters::prelude::*; use plotters::prelude::*;
use rust_nn::Network;
use rust_nn::functions::{activation_functions, loss_functions}; use rust_nn::functions::{activation_functions, loss_functions};
use rust_nn::layers::activation_layer::ActivationLayer; use rust_nn::layers::activation_layer::ActivationLayer;
use rust_nn::layers::fc_layer::{FCLayer, Initializer}; use rust_nn::layers::fc_layer::{FCLayer, Initializer};
use ndarray::Array1; use rust_nn::Network;
fn main() -> Result<(), Box<dyn Error>> { fn main() -> Result<(), Box<dyn Error>> {
// training data // training data
let training_interval = (0.0f64, 2.0f64 * PI); let training_interval = (0.0f64, 2.0f64 * PI);
let steps = 100000; let steps = 100000;
let training_values = Array1::random(steps, Uniform::new(training_interval.0, training_interval.1)).to_vec(); let training_values = Array1::random(
steps,
Uniform::new(training_interval.0, training_interval.1),
)
.to_vec();
let mut x_train = Vec::new(); let mut x_train = Vec::new();
let mut y_train = Vec::new(); let mut y_train = Vec::new();
for x in training_values { for x in training_values {
@ -42,19 +46,23 @@ fn main() -> Result<(), Box<dyn Error>> {
network.add_layer(Box::new(FCLayer::new( network.add_layer(Box::new(FCLayer::new(
8, 8,
Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1),
Initializer::GaussianWFactor(0.0, 1.0, 0.1) Initializer::GaussianWFactor(0.0, 1.0, 0.1),
)));
network.add_layer(Box::new(ActivationLayer::new(
activation_functions::Type::LeakyRelu,
))); )));
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu)));
network.add_layer(Box::new(FCLayer::new( network.add_layer(Box::new(FCLayer::new(
8, 8,
Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1),
Initializer::GaussianWFactor(0.0, 1.0, 0.1) Initializer::GaussianWFactor(0.0, 1.0, 0.1),
)));
network.add_layer(Box::new(ActivationLayer::new(
activation_functions::Type::LeakyRelu,
))); )));
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu)));
network.add_layer(Box::new(FCLayer::new( network.add_layer(Box::new(FCLayer::new(
1, 1,
Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1),
Initializer::GaussianWFactor(0.0, 1.0, 0.1) Initializer::GaussianWFactor(0.0, 1.0, 0.1),
))); )));
// train network on training data // train network on training data
@ -79,20 +87,26 @@ fn main() -> Result<(), Box<dyn Error>> {
.draw()?; .draw()?;
// add the first plot // add the first plot
let data1: Vec<(f64,f64)> = x_test.iter().zip(y_test_true.iter()) let data1: Vec<(f64, f64)> = x_test
.iter()
.zip(y_test_true.iter())
.map(|(x, y)| (x[0], y[0])) .map(|(x, y)| (x[0], y[0]))
.collect(); .collect();
chart chart
.draw_series(LineSeries::new(data1, &RED)).unwrap() .draw_series(LineSeries::new(data1, &RED))
.unwrap()
.label("true values") .label("true values")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &RED)); .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &RED));
// add the second plot // add the second plot
let data2: Vec<(f64,f64)> = x_test.iter().zip(y_test_pred.iter()) let data2: Vec<(f64, f64)> = x_test
.iter()
.zip(y_test_pred.iter())
.map(|(x, y)| (x[0], y[0])) .map(|(x, y)| (x[0], y[0]))
.collect(); .collect();
chart chart
.draw_series(LineSeries::new(data2, &BLUE)).unwrap() .draw_series(LineSeries::new(data2, &BLUE))
.unwrap()
.label("predicted values") .label("predicted values")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &BLUE)); .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &BLUE));

View file

@ -1,10 +1,10 @@
extern crate rust_nn; extern crate rust_nn;
use rust_nn::Network; use ndarray::array;
use rust_nn::functions::{activation_functions, loss_functions}; use rust_nn::functions::{activation_functions, loss_functions};
use rust_nn::layers::activation_layer::ActivationLayer; use rust_nn::layers::activation_layer::ActivationLayer;
use rust_nn::layers::fc_layer::{FCLayer, Initializer}; use rust_nn::layers::fc_layer::{FCLayer, Initializer};
use ndarray::array; use rust_nn::Network;
fn main() { fn main() {
// training data // training data
@ -12,20 +12,15 @@ fn main() {
array![0.0, 0.0], array![0.0, 0.0],
array![0.0, 1.0], array![0.0, 1.0],
array![1.0, 0.0], array![1.0, 0.0],
array![1.0, 1.0] array![1.0, 1.0],
];
let y_train = vec![
array![0.0],
array![1.0],
array![1.0],
array![0.0]
]; ];
let y_train = vec![array![0.0], array![1.0], array![1.0], array![0.0]];
// test data // test data
let x_test= vec![ let x_test = vec![
array![0.0, 0.0], array![0.0, 0.0],
array![0.0, 1.0], array![0.0, 1.0],
array![1.0, 0.0], array![1.0, 0.0],
array![1.0, 1.0] array![1.0, 1.0],
]; ];
// initialize neural network // initialize neural network
@ -35,15 +30,19 @@ fn main() {
network.add_layer(Box::new(FCLayer::new( network.add_layer(Box::new(FCLayer::new(
3, 3,
Initializer::Gaussian(0.0, 1.0), Initializer::Gaussian(0.0, 1.0),
Initializer::Gaussian(0.0, 1.0) Initializer::Gaussian(0.0, 1.0),
)));
network.add_layer(Box::new(ActivationLayer::new(
activation_functions::Type::Tanh,
))); )));
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::Tanh)));
network.add_layer(Box::new(FCLayer::new( network.add_layer(Box::new(FCLayer::new(
1, 1,
Initializer::Gaussian(0.0, 1.0), Initializer::Gaussian(0.0, 1.0),
Initializer::Gaussian(0.0, 1.0) Initializer::Gaussian(0.0, 1.0),
)));
network.add_layer(Box::new(ActivationLayer::new(
activation_functions::Type::Tanh,
))); )));
network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::Tanh)));
// train network on training data // train network on training data
network.fit(x_train, y_train, 1000, 0.1, false); network.fit(x_train, y_train, 1000, 0.1, false);

View file

@ -6,16 +6,21 @@ pub enum Type {
Logistic, Logistic,
Tanh, Tanh,
Relu, Relu,
LeakyRelu LeakyRelu,
} }
pub fn parse_type(t: Type) -> (fn(&Array1<f64>) -> Array1<f64>, fn(&Array1<f64>) -> Array1<f64>) { pub fn parse_type(
t: Type,
) -> (
fn(&Array1<f64>) -> Array1<f64>,
fn(&Array1<f64>) -> Array1<f64>,
) {
match t { match t {
Type::Identity => (identity, identity_prime), Type::Identity => (identity, identity_prime),
Type::Logistic => (logistic, logistic_prime), Type::Logistic => (logistic, logistic_prime),
Type::Tanh => (tanh, tanh_prime), Type::Tanh => (tanh, tanh_prime),
Type::Relu => (relu, relu_prime), Type::Relu => (relu, relu_prime),
Type::LeakyRelu => (leaky_relu, leaky_relu_prime) Type::LeakyRelu => (leaky_relu, leaky_relu_prime),
} }
} }
@ -78,7 +83,7 @@ pub fn relu(matrix: &Array1<f64>) -> Array1<f64> {
pub fn relu_prime(matrix: &Array1<f64>) -> Array1<f64> { pub fn relu_prime(matrix: &Array1<f64>) -> Array1<f64> {
let mut result = matrix.clone(); let mut result = matrix.clone();
for x in result.iter_mut() { for x in result.iter_mut() {
*x = if (*x) <= 0.0 {0.0} else {1.0}; *x = if (*x) <= 0.0 { 0.0 } else { 1.0 };
} }
result result
} }
@ -94,7 +99,7 @@ pub fn leaky_relu(matrix: &Array1<f64>) -> Array1<f64> {
pub fn leaky_relu_prime(matrix: &Array1<f64>) -> Array1<f64> { pub fn leaky_relu_prime(matrix: &Array1<f64>) -> Array1<f64> {
let mut result = matrix.clone(); let mut result = matrix.clone();
for x in result.iter_mut() { for x in result.iter_mut() {
*x = if (*x) <= 0.0 {0.001} else {1.0}; *x = if (*x) <= 0.0 { 0.001 } else { 1.0 };
} }
result result
} }

View file

@ -2,13 +2,18 @@ use ndarray::{Array1, ArrayView1};
pub enum Type { pub enum Type {
MSE, MSE,
MAE MAE,
} }
pub fn parse_type(t: Type) -> (fn(ArrayView1<f64>, ArrayView1<f64>) -> f64, fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>) { pub fn parse_type(
t: Type,
) -> (
fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
) {
match t { match t {
Type::MSE => (mse, mse_prime), Type::MSE => (mse, mse_prime),
Type::MAE => (mae, mae_prime) Type::MAE => (mae, mae_prime),
} }
} }

View file

@ -1,13 +1,13 @@
use ndarray::{Array1, arr1, ArrayView1}; use ndarray::{arr1, Array1, ArrayView1};
use crate::functions::activation_functions::*;
use super::Layer; use super::Layer;
use crate::functions::activation_functions::*;
pub struct ActivationLayer { pub struct ActivationLayer {
input: Array1<f64>, input: Array1<f64>,
output: Array1<f64>, output: Array1<f64>,
activation: fn(&Array1<f64>) -> Array1<f64>, activation: fn(&Array1<f64>) -> Array1<f64>,
activation_prime: fn(&Array1<f64>) -> Array1<f64> activation_prime: fn(&Array1<f64>) -> Array1<f64>,
} }
impl ActivationLayer { impl ActivationLayer {
@ -17,7 +17,7 @@ impl ActivationLayer {
input: arr1(&[]), input: arr1(&[]),
output: arr1(&[]), output: arr1(&[]),
activation, activation,
activation_prime activation_prime,
} }
} }
} }
@ -36,5 +36,4 @@ impl Layer for ActivationLayer {
temp.zip_mut_with(&output_error, |x, y| *x *= y); temp.zip_mut_with(&output_error, |x, y| *x *= y);
temp temp
} }
} }

View file

@ -1,8 +1,8 @@
extern crate ndarray; extern crate ndarray;
use ndarray::{Array1, Array2, arr1, arr2, Array, ArrayView1, ShapeBuilder}; use ndarray::{arr1, arr2, Array, Array1, Array2, ArrayView1, ShapeBuilder};
use ndarray_rand::RandomExt;
use ndarray_rand::rand_distr::{Normal, Uniform}; use ndarray_rand::rand_distr::{Normal, Uniform};
use ndarray_rand::RandomExt;
use super::Layer; use super::Layer;
@ -11,21 +11,25 @@ pub enum Initializer {
Ones, Ones,
Gaussian(f64, f64), Gaussian(f64, f64),
GaussianWFactor(f64, f64, f64), GaussianWFactor(f64, f64, f64),
Uniform(f64, f64) Uniform(f64, f64),
} }
impl Initializer { impl Initializer {
pub fn init<Sh, D>(&self, shape: Sh) -> Array<f64, D> pub fn init<Sh, D>(&self, shape: Sh) -> Array<f64, D>
where where
Sh: ShapeBuilder<Dim = D>, D: ndarray::Dimension Sh: ShapeBuilder<Dim = D>,
D: ndarray::Dimension,
{ {
match self { match self {
Self::Zeros => Array::zeros(shape), Self::Zeros => Array::zeros(shape),
Self::Ones => Array::ones(shape), Self::Ones => Array::ones(shape),
Self::Gaussian(mean, stddev) => Array::random(shape, Normal::new(*mean, *stddev).unwrap()), Self::Gaussian(mean, stddev) => {
Self::GaussianWFactor(mean, stddev, factor) Array::random(shape, Normal::new(*mean, *stddev).unwrap())
=> Array::random(shape, Normal::new(*mean, *stddev).unwrap()) * *factor, }
Self::Uniform(low, high) => Array::random(shape, Uniform::new(low, high)) Self::GaussianWFactor(mean, stddev, factor) => {
Array::random(shape, Normal::new(*mean, *stddev).unwrap()) * *factor
}
Self::Uniform(low, high) => Array::random(shape, Uniform::new(low, high)),
} }
} }
} }
@ -42,7 +46,11 @@ pub struct FCLayer {
} }
impl FCLayer { impl FCLayer {
pub fn new(num_neurons: usize, weight_initializer: Initializer, bias_initializer: Initializer) -> Self { pub fn new(
num_neurons: usize,
weight_initializer: Initializer,
bias_initializer: Initializer,
) -> Self {
FCLayer { FCLayer {
num_neurons, num_neurons,
is_initialized: false, is_initialized: false,
@ -51,7 +59,7 @@ impl FCLayer {
input: arr1(&[]), input: arr1(&[]),
output: arr1(&[]), output: arr1(&[]),
weights: arr2(&[[]]), weights: arr2(&[[]]),
biases: arr1(&[]) biases: arr1(&[]),
} }
} }
@ -75,9 +83,16 @@ impl Layer for FCLayer {
fn backward_pass(&mut self, output_error: ArrayView1<f64>, learning_rate: f64) -> Array1<f64> { fn backward_pass(&mut self, output_error: ArrayView1<f64>, learning_rate: f64) -> Array1<f64> {
let input_error = output_error.dot(&self.weights.t()); let input_error = output_error.dot(&self.weights.t());
let delta_weights = let delta_weights = self
self.input.to_owned().into_shape((self.input.len(), 1usize)).unwrap() .input
.dot(&output_error.into_shape((1usize, output_error.len())).unwrap()); .to_owned()
.into_shape((self.input.len(), 1usize))
.unwrap()
.dot(
&output_error
.into_shape((1usize, output_error.len()))
.unwrap(),
);
self.weights = &self.weights + learning_rate * &delta_weights; self.weights = &self.weights + learning_rate * &delta_weights;
self.biases = &self.biases + learning_rate * &output_error; self.biases = &self.biases + learning_rate * &output_error;
input_error input_error

View file

@ -8,7 +8,7 @@ use ndarray::{Array1, ArrayView1};
pub struct Network { pub struct Network {
layers: Vec<Box<dyn Layer>>, layers: Vec<Box<dyn Layer>>,
loss: fn(ArrayView1<f64>, ArrayView1<f64>) -> f64, loss: fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
loss_prime: fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64> loss_prime: fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
} }
impl Network { impl Network {
@ -17,7 +17,7 @@ impl Network {
Network { Network {
layers: vec![], layers: vec![],
loss, loss,
loss_prime loss_prime,
} }
} }
@ -41,7 +41,14 @@ impl Network {
result result
} }
pub fn fit(&mut self, x_train: Vec<Array1<f64>>, y_train: Vec<Array1<f64>>, epochs: usize, learning_rate: f64, trivial_optimize: bool) { pub fn fit(
&mut self,
x_train: Vec<Array1<f64>>,
y_train: Vec<Array1<f64>>,
epochs: usize,
learning_rate: f64,
trivial_optimize: bool,
) {
assert!(x_train.len() > 0); assert!(x_train.len() > 0);
assert!(x_train.len() == y_train.len()); assert!(x_train.len() == y_train.len());
let num_samples = x_train.len(); let num_samples = x_train.len();
@ -63,7 +70,7 @@ impl Network {
let mut error = (self.loss_prime)(y_train[j].view(), output.view()); let mut error = (self.loss_prime)(y_train[j].view(), output.view());
for layer in self.layers.iter_mut().rev() { for layer in self.layers.iter_mut().rev() {
if trivial_optimize { if trivial_optimize {
error = layer.backward_pass(error.view(), learning_rate / (i+1) as f64); error = layer.backward_pass(error.view(), learning_rate / (i + 1) as f64);
} else { } else {
error = layer.backward_pass(error.view(), learning_rate); error = layer.backward_pass(error.view(), learning_rate);
} }
@ -71,7 +78,7 @@ impl Network {
} }
// calculate average error on all samples // calculate average error on all samples
err /= num_samples as f64; err /= num_samples as f64;
println!("epoch {}/{} error={}", i+1, epochs, err); println!("epoch {}/{} error={}", i + 1, epochs, err);
} }
} }
} }