Compare commits
3 commits
d130c7cce1
...
7b12a054d5
Author | SHA1 | Date | |
---|---|---|---|
7b12a054d5 | |||
98bc599dac | |||
f2e54cfac1 |
5 changed files with 36 additions and 43 deletions
|
@ -1,4 +1,4 @@
|
||||||
use ndarray::{Array1, ArrayView1};
|
use ndarray::Array1;
|
||||||
|
|
||||||
pub enum Type {
|
pub enum Type {
|
||||||
MSE,
|
MSE,
|
||||||
|
@ -6,8 +6,8 @@ pub enum Type {
|
||||||
}
|
}
|
||||||
|
|
||||||
type LossFuncTuple = (
|
type LossFuncTuple = (
|
||||||
fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
|
fn(&Array1<f64>, &Array1<f64>) -> f64,
|
||||||
fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
|
fn(&Array1<f64>, &Array1<f64>) -> Array1<f64>,
|
||||||
);
|
);
|
||||||
|
|
||||||
pub fn parse_type(t: Type) -> LossFuncTuple {
|
pub fn parse_type(t: Type) -> LossFuncTuple {
|
||||||
|
@ -17,23 +17,23 @@ pub fn parse_type(t: Type) -> LossFuncTuple {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn mse(y_true: ArrayView1<f64>, y_pred: ArrayView1<f64>) -> f64 {
|
pub fn mse(y_true: &Array1<f64>, y_pred: &Array1<f64>) -> f64 {
|
||||||
let mut temp = &y_true - &y_pred;
|
let mut temp = y_true - y_pred;
|
||||||
temp.mapv_inplace(|x| x * x);
|
temp.mapv_inplace(|x| x * x);
|
||||||
let mut sum = 0.0;
|
let mut sum = 0.0;
|
||||||
for i in 0..temp.len() {
|
for entry in temp.iter() {
|
||||||
sum += temp.get(i).unwrap();
|
sum += entry;
|
||||||
}
|
}
|
||||||
sum / temp.len() as f64
|
sum / temp.len() as f64
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn mse_prime(y_true: ArrayView1<f64>, y_pred: ArrayView1<f64>) -> Array1<f64> {
|
pub fn mse_prime(y_true: &Array1<f64>, y_pred: &Array1<f64>) -> Array1<f64> {
|
||||||
let temp = &y_true - &y_pred;
|
let temp = y_true - y_pred;
|
||||||
temp / (y_true.len() as f64 / 2.0)
|
temp / (y_true.len() as f64 / 2.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn mae(y_true: ArrayView1<f64>, y_pred: ArrayView1<f64>) -> f64 {
|
pub fn mae(y_true: &Array1<f64>, y_pred: &Array1<f64>) -> f64 {
|
||||||
let temp = &y_true - &y_pred;
|
let temp = y_true - y_pred;
|
||||||
let mut sum = 0.0;
|
let mut sum = 0.0;
|
||||||
for i in 0..temp.len() {
|
for i in 0..temp.len() {
|
||||||
sum += temp.get(i).unwrap().abs();
|
sum += temp.get(i).unwrap().abs();
|
||||||
|
@ -41,7 +41,7 @@ pub fn mae(y_true: ArrayView1<f64>, y_pred: ArrayView1<f64>) -> f64 {
|
||||||
sum / temp.len() as f64
|
sum / temp.len() as f64
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn mae_prime(y_true: ArrayView1<f64>, y_pred: ArrayView1<f64>) -> Array1<f64> {
|
pub fn mae_prime(y_true: &Array1<f64>, y_pred: &Array1<f64>) -> Array1<f64> {
|
||||||
let mut result = Array1::zeros(y_true.raw_dim());
|
let mut result = Array1::zeros(y_true.raw_dim());
|
||||||
for i in 0..result.len() {
|
for i in 0..result.len() {
|
||||||
if y_true.get(i).unwrap() < y_pred.get(i).unwrap() {
|
if y_true.get(i).unwrap() < y_pred.get(i).unwrap() {
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
use ndarray::{arr1, Array1, ArrayView1};
|
use ndarray::{arr1, Array1};
|
||||||
|
|
||||||
use super::Layer;
|
use super::Layer;
|
||||||
use crate::functions::activation_functions::*;
|
use crate::functions::activation_functions::*;
|
||||||
|
@ -23,15 +23,15 @@ impl ActivationLayer {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Layer for ActivationLayer {
|
impl Layer for ActivationLayer {
|
||||||
fn forward_pass(&mut self, input: ArrayView1<f64>) -> Array1<f64> {
|
fn forward_pass(&mut self, input: Array1<f64>) -> Array1<f64> {
|
||||||
self.input = input.to_owned();
|
self.input = input;
|
||||||
// output isn't needed elsewhere
|
// output isn't needed elsewhere
|
||||||
// self.output = (self.activation)(&self.input);
|
// self.output = (self.activation)(&self.input);
|
||||||
// self.output.clone()
|
// self.output.clone()
|
||||||
(self.activation)(&self.input)
|
(self.activation)(&self.input)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn backward_pass(&mut self, output_error: ArrayView1<f64>, _learning_rate: f64) -> Array1<f64> {
|
fn backward_pass(&mut self, output_error: Array1<f64>, _learning_rate: f64) -> Array1<f64> {
|
||||||
(self.activation_prime)(&self.input) * output_error
|
(self.activation_prime)(&self.input) * output_error
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
extern crate ndarray;
|
extern crate ndarray;
|
||||||
|
|
||||||
use ndarray::{arr1, arr2, Array, Array1, Array2, ArrayView1, ShapeBuilder};
|
use ndarray::{arr1, arr2, Array, Array1, Array2, ShapeBuilder};
|
||||||
use ndarray_rand::rand_distr::{Normal, Uniform};
|
use ndarray_rand::rand_distr::{Normal, Uniform};
|
||||||
use ndarray_rand::RandomExt;
|
use ndarray_rand::RandomExt;
|
||||||
|
|
||||||
|
@ -71,30 +71,25 @@ impl FCLayer {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Layer for FCLayer {
|
impl Layer for FCLayer {
|
||||||
fn forward_pass(&mut self, input: ArrayView1<f64>) -> Array1<f64> {
|
fn forward_pass(&mut self, input: Array1<f64>) -> Array1<f64> {
|
||||||
if !self.is_initialized {
|
if !self.is_initialized {
|
||||||
self.initialize(input.len());
|
self.initialize(input.len());
|
||||||
}
|
}
|
||||||
|
|
||||||
self.input = input.to_owned();
|
self.input = input;
|
||||||
// output isn't needed elsewhere
|
// output isn't needed elsewhere
|
||||||
// self.output = self.input.dot(&self.weights) + &self.biases;
|
// self.output = self.input.dot(&self.weights) + &self.biases;
|
||||||
// self.output.clone()
|
// self.output.clone()
|
||||||
self.input.dot(&self.weights) + &self.biases
|
self.input.dot(&self.weights) + &self.biases
|
||||||
}
|
}
|
||||||
|
|
||||||
fn backward_pass(&mut self, output_error: ArrayView1<f64>, learning_rate: f64) -> Array1<f64> {
|
fn backward_pass(&mut self, output_error: Array1<f64>, learning_rate: f64) -> Array1<f64> {
|
||||||
let input_error = output_error.dot(&self.weights.t());
|
let input_error = output_error.dot(&self.weights.t());
|
||||||
let delta_weights = self
|
let delta_weights = self
|
||||||
.input
|
.input
|
||||||
.to_owned()
|
.to_shape((self.input.len(), 1usize))
|
||||||
.into_shape((self.input.len(), 1usize))
|
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.dot(
|
.dot(&output_error.to_shape((1usize, output_error.len())).unwrap());
|
||||||
&output_error
|
|
||||||
.into_shape((1usize, output_error.len()))
|
|
||||||
.unwrap(),
|
|
||||||
);
|
|
||||||
self.weights = &self.weights + learning_rate * &delta_weights;
|
self.weights = &self.weights + learning_rate * &delta_weights;
|
||||||
self.biases = &self.biases + learning_rate * &output_error;
|
self.biases = &self.biases + learning_rate * &output_error;
|
||||||
input_error
|
input_error
|
||||||
|
|
|
@ -1,9 +1,9 @@
|
||||||
use ndarray::{Array1, ArrayView1};
|
use ndarray::Array1;
|
||||||
|
|
||||||
pub mod activation_layer;
|
pub mod activation_layer;
|
||||||
pub mod fc_layer;
|
pub mod fc_layer;
|
||||||
|
|
||||||
pub trait Layer {
|
pub trait Layer {
|
||||||
fn forward_pass(&mut self, input: ArrayView1<f64>) -> Array1<f64>;
|
fn forward_pass(&mut self, input: Array1<f64>) -> Array1<f64>;
|
||||||
fn backward_pass(&mut self, output_error: ArrayView1<f64>, learning_rate: f64) -> Array1<f64>;
|
fn backward_pass(&mut self, output_error: Array1<f64>, learning_rate: f64) -> Array1<f64>;
|
||||||
}
|
}
|
||||||
|
|
24
src/lib.rs
24
src/lib.rs
|
@ -3,12 +3,12 @@ pub mod layers;
|
||||||
|
|
||||||
use functions::loss_functions::{self, parse_type};
|
use functions::loss_functions::{self, parse_type};
|
||||||
use layers::*;
|
use layers::*;
|
||||||
use ndarray::{Array1, ArrayView1};
|
use ndarray::Array1;
|
||||||
|
|
||||||
pub struct Network {
|
pub struct Network {
|
||||||
layers: Vec<Box<dyn Layer>>,
|
layers: Vec<Box<dyn Layer>>,
|
||||||
loss: fn(ArrayView1<f64>, ArrayView1<f64>) -> f64,
|
loss: fn(&Array1<f64>, &Array1<f64>) -> f64,
|
||||||
loss_prime: fn(ArrayView1<f64>, ArrayView1<f64>) -> Array1<f64>,
|
loss_prime: fn(&Array1<f64>, &Array1<f64>) -> Array1<f64>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Network {
|
impl Network {
|
||||||
|
@ -30,10 +30,9 @@ impl Network {
|
||||||
let mut result = vec![];
|
let mut result = vec![];
|
||||||
|
|
||||||
for input in inputs.iter() {
|
for input in inputs.iter() {
|
||||||
let mut output = Array1::default(inputs[0].raw_dim());
|
let mut output = input.to_owned();
|
||||||
output.assign(input);
|
|
||||||
for layer in &mut self.layers {
|
for layer in &mut self.layers {
|
||||||
output = layer.forward_pass(output.view());
|
output = layer.forward_pass(output);
|
||||||
}
|
}
|
||||||
result.push(output);
|
result.push(output);
|
||||||
}
|
}
|
||||||
|
@ -57,22 +56,21 @@ impl Network {
|
||||||
let mut err = 0.0;
|
let mut err = 0.0;
|
||||||
for j in 0..num_samples {
|
for j in 0..num_samples {
|
||||||
// forward propagation
|
// forward propagation
|
||||||
let mut output = Array1::default(x_train[0].raw_dim());
|
let mut output = x_train[j].to_owned();
|
||||||
output.assign(&x_train[j]);
|
|
||||||
for layer in self.layers.iter_mut() {
|
for layer in self.layers.iter_mut() {
|
||||||
output = layer.forward_pass(output.view());
|
output = layer.forward_pass(output);
|
||||||
}
|
}
|
||||||
|
|
||||||
// compute loss
|
// compute loss
|
||||||
err += (self.loss)(y_train[j].view(), output.view());
|
err += (self.loss)(&y_train[j], &output);
|
||||||
|
|
||||||
// backward propagation
|
// backward propagation
|
||||||
let mut error = (self.loss_prime)(y_train[j].view(), output.view());
|
let mut error = (self.loss_prime)(&y_train[j], &output);
|
||||||
for layer in self.layers.iter_mut().rev() {
|
for layer in self.layers.iter_mut().rev() {
|
||||||
if trivial_optimize {
|
if trivial_optimize {
|
||||||
error = layer.backward_pass(error.view(), learning_rate / (i + 1) as f64);
|
error = layer.backward_pass(error, learning_rate / (i + 1) as f64);
|
||||||
} else {
|
} else {
|
||||||
error = layer.backward_pass(error.view(), learning_rate);
|
error = layer.backward_pass(error, learning_rate);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue