extern crate rust_nn; use std::error::Error; use std::f64::consts::PI; use ndarray::Array1; use ndarray_rand::rand_distr::Uniform; use ndarray_rand::RandomExt; use plotters::prelude::*; use rust_nn::functions::{activation_functions, loss_functions}; use rust_nn::layers::activation_layer::ActivationLayer; use rust_nn::layers::fc_layer::{FCLayer, Initializer}; use rust_nn::Network; fn main() { // training data let training_interval = (0.0f64, 2.0f64 * PI); let steps = 100000; let training_values = Array1::random( steps, Uniform::new(training_interval.0, training_interval.1), ) .to_vec(); let mut x_train = Vec::with_capacity(steps); let mut y_train = Vec::with_capacity(steps); for x in training_values { x_train.push(Array1::from_elem(1usize, x)); y_train.push(Array1::from_elem(1usize, x.sin())); } // test data let test_steps = 1000; let interval_length = training_interval.1 - training_interval.0; let step_size = interval_length / test_steps as f64; let testing_values = Array1::range(training_interval.0, training_interval.1, step_size); let mut x_test = Vec::with_capacity(test_steps); let mut y_test_true = Vec::with_capacity(test_steps); for x in testing_values { x_test.push(Array1::from_elem(1usize, x)); y_test_true.push(Array1::from_elem(1usize, x.sin())); } // initialize neural network let mut network = Network::new(loss_functions::Type::MSE); // add layers network.add_layer(Box::new(FCLayer::new( 8, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1), ))); network.add_layer(Box::new(ActivationLayer::new( activation_functions::Type::Gelu, ))); network.add_layer(Box::new(FCLayer::new( 8, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1), ))); network.add_layer(Box::new(ActivationLayer::new( activation_functions::Type::Gelu, ))); network.add_layer(Box::new(FCLayer::new( 1, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1), ))); // train network on training data network.fit(&x_train, &y_train, 100, 0.05, true); // predict test dataset let y_test_pred = network.predict(&x_test); // show results if let Ok(()) = draw_results(&training_interval, &x_test, &y_test_true, &y_test_pred) { println!("results can be seen in ./examples/sine.png"); } else { println!("failed to draw results"); } } fn draw_results( training_interval: &(f64, f64), x_test: &[Array1], y_test_true: &[Array1], y_test_pred: &[Array1], ) -> Result<(), Box> { // create the chart let buf = BitMapBackend::new("./examples/sine.png", (800, 600)).into_drawing_area(); buf.fill(&WHITE)?; let mut chart = ChartBuilder::on(&buf) //.caption("sin(x)", ("sans-serif", 30)) .x_label_area_size(30) .y_label_area_size(30) .build_cartesian_2d(training_interval.0..training_interval.1, -1.0f64..1.0f64)?; chart .configure_mesh() .disable_x_mesh() .disable_y_mesh() .draw()?; // add the first plot let data1: Vec<(f64, f64)> = x_test .iter() .zip(y_test_true.iter()) .map(|(x, y)| (x[0], y[0])) .collect(); chart .draw_series(LineSeries::new(data1, &RED)) .unwrap() .label("true values") .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], RED)); // add the second plot let data2: Vec<(f64, f64)> = x_test .iter() .zip(y_test_pred.iter()) .map(|(x, y)| (x[0], y[0])) .collect(); chart .draw_series(LineSeries::new(data2, &BLUE)) .unwrap() .label("predicted values") .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], BLUE)); Ok(()) }