extern crate rust_nn; use std::error::Error; use std::f64::consts::PI; use ndarray_rand::RandomExt; use ndarray_rand::rand_distr::Uniform; use plotters::prelude::*; use rust_nn::Network; use rust_nn::functions::{activation_functions, loss_functions}; use rust_nn::layers::activation_layer::ActivationLayer; use rust_nn::layers::fc_layer::{FCLayer, Initializer}; use ndarray::Array1; fn main() -> Result<(), Box> { // training data let training_interval = (0.0f64, 2.0f64 * PI); let steps = 100000; let training_values = Array1::random(steps, Uniform::new(training_interval.0, training_interval.1)).to_vec(); let mut x_train = Vec::new(); let mut y_train = Vec::new(); for x in training_values { x_train.push(Array1::from_elem(1usize, x)); y_train.push(Array1::from_elem(1usize, x.sin())); } // test data let test_steps = 1000; let interval_length = training_interval.1 - training_interval.0; let step_size = interval_length / test_steps as f64; let testing_values = Array1::range(training_interval.0, training_interval.1, step_size); let mut x_test = Vec::new(); let mut y_test_true = Vec::new(); for x in testing_values { x_test.push(Array1::from_elem(1usize, x)); y_test_true.push(Array1::from_elem(1usize, x.sin())); } // initialize neural network let mut network = Network::new(loss_functions::Type::MSE); // add layers network.add_layer(Box::new(FCLayer::new( 8, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1) ))); network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu))); network.add_layer(Box::new(FCLayer::new( 8, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1) ))); network.add_layer(Box::new(ActivationLayer::new(activation_functions::Type::LeakyRelu))); network.add_layer(Box::new(FCLayer::new( 1, Initializer::GaussianWFactor(0.0, 1.0, 0.1), Initializer::GaussianWFactor(0.0, 1.0, 0.1) ))); // train network on training data network.fit(x_train, y_train, 100, 0.05, true); // predict test dataset let y_test_pred = network.predict(x_test.clone()); // create the chart let buf = BitMapBackend::new("./examples/sine.png", (800, 600)).into_drawing_area(); buf.fill(&WHITE)?; let mut chart = ChartBuilder::on(&buf) //.caption("sin(x)", ("sans-serif", 30)) .x_label_area_size(30) .y_label_area_size(30) .build_cartesian_2d(training_interval.0..training_interval.1, -1.0f64..1.0f64)?; chart .configure_mesh() .disable_x_mesh() .disable_y_mesh() .draw()?; // add the first plot let mut data1: Vec<(f64,f64)> = x_test.iter().zip(y_test_true.iter()) .map(|(x, y)| (x[0], y[0])) .collect(); data1.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap()); chart .draw_series(LineSeries::new(data1, &RED)).unwrap() .label("true values") .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &RED)); // add the second plot let mut data2: Vec<(f64,f64)> = x_test.iter().zip(y_test_pred.iter()) .map(|(x, y)| (x[0], y[0])) .collect(); data2.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap()); chart .draw_series(LineSeries::new(data2, &BLUE)).unwrap() .label("predicted values") .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 1, y)], &BLUE)); Ok(()) }